Publications

2002
Kerdok AE, Biewener AA, McMahon TA, Weyand PG, Herr HM. Energetics and mechanics of human running on surfaces of different stiffnesses. J Appl Physiol (1985)J Appl Physiol (1985)J Appl Physiol (1985). 2002;92 :469-78.Abstract
Mammals use the elastic components in their legs (principally tendons, ligaments, and muscles) to run economically, while maintaining consistent support mechanics across various surfaces. To examine how leg stiffness and metabolic cost are affected by changes in substrate stiffness, we built experimental platforms with adjustable stiffness to fit on a force-plate-fitted treadmill. Eight male subjects [mean body mass: 74.4 +/- 7.1 (SD) kg; leg length: 0.96 +/- 0.05 m] ran at 3.7 m/s over five different surface stiffnesses (75.4, 97.5, 216.8, 454.2, and 945.7 kN/m). Metabolic, ground-reaction force, and kinematic data were collected. The 12.5-fold decrease in surface stiffness resulted in a 12% decrease in the runner's metabolic rate and a 29% increase in their leg stiffness. The runner's support mechanics remained essentially unchanged. These results indicate that surface stiffness affects running economy without affecting running support mechanics. We postulate that an increased energy rebound from the compliant surfaces studied contributes to the enhanced running economy.
Hedrick TL, Tobalske BW, Biewener AA. Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria). J Exp BiolJ Exp BiolJ Exp Biol. 2002;205 :1389-409.Abstract
Birds and bats are known to employ two different gaits in flapping flight, a vortex-ring gait in slow flight and a continuous-vortex gait in fast flight. We studied the use of these gaits over a wide range of speeds (1-17 ms(-1)) and transitions between gaits in cockatiels (Nymphicus hollandicus) and ringed turtle-doves (Streptopelia risoria) trained to fly in a recently built, variable-speed wind tunnel. Gait use was investigated via a combination of three-dimensional kinematics and quasi-steady aerodynamic modeling of bound circulation on the distal and proximal portions of the wing. Estimates of lift from our circulation model were sufficient to support body weight at all but the slowest speeds (1 and 3 ms(-1)). From comparisons of aerodynamic impulse derived from our circulation analysis with the impulse estimated from whole-body acceleration, it appeared that our quasi-steady aerodynamic analysis was most accurate at intermediate speeds (5-11 ms(-1)). Despite differences in wing shape and wing loading, both species shifted from a vortex-ring to a continuous-vortex gait at 7 ms(-1). We found that the shift from a vortex-ring to a continuous-vortex gait (i) was associated with a phase delay in the peak angle of attack of the proximal wing section from downstroke into upstroke and (ii) depended on sufficient forward velocity to provide airflow over the wing during the upstroke similar to that during the downstroke. Our kinematic estimates indicated significant variation in the magnitude of circulation over the course the wingbeat cycle when either species used a continuous-vortex gait. This variation was great enough to suggest that both species shifted to a ladder-wake gait as they approached the maximum flight speed (cockatiels 15 ms(-1), doves 17 ms(-1)) that they would sustain in the wind tunnel. This shift in flight gait appeared to reflect the need to minimize drag and produce forward thrust in order to fly at high speed. The ladder-wake gait was also employed in forward and vertical acceleration at medium and fast flight speeds.
Gillis GB, Biewener AA. Effects of surface grade on proximal hindlimb muscle strain and activation during rat locomotion. J Appl Physiol (1985)J Appl Physiol (1985)J Appl Physiol (1985). 2002;93 :1731-43.Abstract
Sonomicrometry and electromyography were used to determine how surface grade influences strain and activation patterns in the biceps femoris and vastus lateralis of the rat. Muscle activity is generally present during much of stance and is most intense on an incline, intermediate on the level, and lowest on a decline, where the biceps remains inactive except at high speeds. Biceps fascicles shorten during stance, with strains ranging from 0.07-0.30 depending on individual, gait, and grade. Shortening strains vary significantly among grades (P = 0.05) and average 0.21, 0.16, and 0.14 for incline, level, and decline walking, respectively; similar trends are present during trotting and galloping. Vastus fascicles are stretched while active over the first half of stance on all grades, and then typically shorten over the second half of stance. Late-stance shortening is highest during galloping, averaging 0.14, 0.10, and 0.02 in the leading limb on incline, level, and decline surfaces, respectively. Our results suggest that modulation of strain and activation in these proximal limb muscles is important for accommodating different surface grades.
Biewener AA. Future directions for the analysis of musculoskeletal design and locomotor performance. J MorpholJ MorpholJ Morphol. 2002;252 :38-51.Abstract
New techniques and conceptual frameworks offer new challenges and exciting opportunities for research on the biomechanics and physiology of vertebrate musculoskeletal design and locomotor performance. Past research based on electromyography and two-dimensional kinematics has greatly advanced the field of vertebrate functional morphology. Studies using these approaches have revealed much about vertebrate structure and function and have emphasized the importance of incorporating historical and developmental constraint and ecological context. Continued use of these experimental tools, but with greater emphasis on three-dimensional analysis of body movement, in combination with 3D kinetics and flow visualization of fluid movement past moving organisms, can now take advantage of the considerable advances in computing power and digital video technology. Indeed, surprisingly few detailed 3D analyses of movement for many locomotor modes and differing organisms are presently available. A challenge of 3D analyses will be to reduce the complexity of the data obtained in order to identify general principles of movement and biomechanics. New techniques and approaches for measuring muscle forces and length changes, together with activation patterns and movement, under dynamic conditions of more varied motor behavior are now also available. These provide the opportunity to study the mechanics and physiology of muscle function at greater depth and under more realistic conditions than has been previously possible. The importance of studying intact, behaving organisms under a broader range of locomotor conditions (other than steady state) and in the context of their natural environment remains a critical need for vertebrate biologists. This provides the much-needed opportunity for placing advances at more cellular and molecular levels into the context of whole organism function. Hence, studies at the organismal level remain paramount.
Biewener AA. Walking with tyrannosaurs. NatureNatureNature. 2002;415 :971-3.
2001
Williamson MR, Dial KP, Biewener AA. Pectoralis muscle performance during ascending and slow level flight in mallards (Anas platyrhynchos). J Exp BiolJ Exp BiolJ Exp Biol. 2001;204 :495-507.Abstract
In vivo measurements of pectoralis muscle length change and force production were obtained using sonomicrometry and delto-pectoral bone strain recordings during ascending and slow level flight in mallards (Anas platyrhynchos). These measurements provide a description of the force/length properties of the pectoralis under dynamic conditions during two discrete flight behaviors and allow an examination of the effects of differences in body size and morphology on pectoralis performance by comparing the results with those of a recent similar study of slow level flight in pigeons (Columbia livia). In the present study, the mallard pectoralis showed a distinct pattern of active lengthening during the upstroke. This probably enhances the rate of force generation and the magnitude of the force generated and, thus, the amount of work and power produced during the downstroke. The power output of the pectoralis averaged 17.0 W kg(-)(1 )body mass (131 W kg(-)(1 )muscle mass) during slow level flight (3 m s(-)(1)) and 23.3 W kg(-)(1 )body mass (174 W kg(-)(1 )muscle mass) during ascending flight. This increase in power was achieved principally via an increase in muscle strain (29 % versus 36 %), rather than an increase in peak force (107 N versus 113 N) or cycle frequency (8.4 Hz versus 8.9 Hz). Body-mass-specific power output of mallards during slow level flight (17.0 W kg(-)(1)), measured in terms of pectoralis mechanical power, was similar to that measured recently in pigeons (16.1 W kg(-)(1)). Mallards compensate for their greater body mass and proportionately smaller wing area and pectoralis muscle volume by operating with a high myofibrillar stress to elevate mechanical power output.
Gillis GB, Biewener AA. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J Exp BiolJ Exp BiolJ Exp Biol. 2001;204 :2717-31.Abstract
Understanding how animals actually use their muscles during locomotion is an important goal in the fields of locomotor physiology and biomechanics. Active muscles in vivo can shorten, lengthen or remain isometric, and their mechanical performance depends on the relative magnitude and timing of these patterns of fascicle strain and activation. It has recently been suggested that terrestrial animals may conserve metabolic energy during locomotion by minimizing limb extensor muscle strain during stance, when the muscle is active, facilitating more economical force generation and elastic energy recovery from limb muscle-tendon units. However, whereas the ankle extensors of running turkeys and hopping wallabies have been shown to generate force with little length change (<6% strain), similar muscles in cats appear to change length more substantially while active. Because previous work has tended to focus on the mechanical behavior of ankle extensors during animal movements, the actions of more proximal limb muscles are less well understood. To explore further the hypothesis of force economy and isometric behavior of limb muscles during terrestrial locomotion, we measured patterns of electromyographic (EMG) activity and fascicle strain (using sonomicrometry) in two of the largest muscles of the rat hindlimb, the biceps femoris (a hip extensor) and vastus lateralis (a knee extensor) during walking, trotting and galloping. Our results show that the biceps and vastus exhibit largely overlapping bursts of electrical activity during the stance phase of each step cycle in all gaits. During walking and trotting, this activity typically commences shortly before the hindlimb touches the ground, but during galloping the onset of activity depends on whether the limb is trailing (first limb down) or leading (second limb down), particularly in the vastus. In the trailing limb, the timing of the onset of vastus activity is slightly earlier than that observed during walking and trotting, but in the leading limb, this activity begins much later, well after the foot makes ground contact (mean 7% of the step cycle). In both muscles, EMG activity typically ceases approximately two-thirds of the way through the stance phase. While electrically active during stance, biceps fascicles shorten, although the extent of shortening differs significantly among gaits (P<0.01). Total average fascicle shortening strain in the biceps is greater during walking (23+/-3%) and trotting (27+/-5%) than during galloping (12+/-5% and 19+/-6% in the trailing and leading limbs, respectively). In contrast, vastus fascicles typically lengthen (by 8-16%, depending on gait) over the first half of stance, when the muscle is electrically active, before shortening slightly or remaining nearly isometric over much of the second half of stance. Interestingly, in the leading limb during galloping, vastus fascicles lengthen prior to muscle activation and exhibit substantial shortening (10+/-2%) during the period when EMG activity is recorded. Thus, patterns of muscle activation and/or muscle strain differ among gaits, between muscles and even within the same muscle of contralateral hindlimbs (as during galloping). In contrast to the minimal strain predicted by the force economy hypothesis, our results suggest that proximal limb muscles in rats operate over substantial length ranges during stance over various speeds and gaits and exhibit complex and changing activation and strain regimes, exemplifying the variable mechanical roles that muscles can play, even during level, steady-speed locomotion.
Blob RW, Biewener AA. Mechanics of limb bone loading during terrestrial locomotion in the green iguana (Iguana iguana) and American alligator (Alligator mississippiensis). J Exp BiolJ Exp BiolJ Exp Biol. 2001;204 :1099-122.Abstract
In vivo measurements of strain in the femur and tibia of Iguana iguana (Linnaeus) and Alligator mississippiensis (Daudin) have indicated three ways in which limb bone loading in these species differs from patterns observed in most birds and mammals: (i) the limb bones of I. iguana and A. mississippiensis experience substantial torsion, (ii) the limb bones of I. iguana and A. mississippiensis have higher safety factors than those of birds or mammals, and (iii) load magnitudes in the limb bones of A. mississippiensis do not decrease uniformly with the use of a more upright posture. To verify these patterns, and to evaluate the ground and muscle forces that produce them, we collected three-dimensional kinematic and ground reaction force data from subadult I. iguana and A. mississippiensis using a force platform and high-speed video. The results of these force/kinematic studies generally confirm the loading regimes inferred from in vivo strain measurements. The ground reaction force applies a torsional moment to the femur and tibia in both species; for the femur, this moment augments the moment applied by the caudofemoralis muscle, suggesting large torsional stresses. In most cases, safety factors in bending calculated from force/video data are lower than those determined from strain data, but are as high or higher than the safety factors of bird and mammal limb bones in bending. Finally, correlations between limb posture and calculated stress magnitudes in the femur of I. iguana confirm patterns observed during direct bone strain recordings from A. mississippiensis: in more upright steps, tensile stresses on the anterior cortex decrease, but peak compressive stresses on the dorsal cortex increase. Equilibrium analyses indicate that bone stress increases as posture becomes more upright in saurians because the ankle and knee extensor muscles exert greater forces during upright locomotion. If this pattern of increased bone stress with the use of a more upright posture is typical of taxa using non-parasagittal kinematics, then similar increases in load magnitudes were probably experienced by lineages that underwent evolutionary shifts to a non-sprawling posture. High limb bone safety factors and small body size in these lineages could have helped to accommodate such increases in limb bone stress.
Biewener AA, Corning WR. Dynamics of mallard (Anas platyrynchos) gastrocnemius function during swimming versus terrestrial locomotion. J Exp BiolJ Exp BiolJ Exp Biol. 2001;204 :1745-56.Abstract
This study investigates how the contractile function of a muscle may be modulated to accommodate changes in locomotor mode and differences in the physical environment. In vivo recordings of lateral gastrocnemius (LG) activation, force development (measured using tendon buckle transducers) and length change (measured using sonomicrometry) were obtained from mallard ducks (Anas platyrhynchos) as they swam at steady speeds in a water tank and walked or ran on land. LG force recordings were compared with combined lateral and medial gastrocnemius (MG) muscle-tendon force recordings obtained from the contralateral limb, allowing force development by the MG to be estimated relative to that of the LG. Although similar stresses were calculated to act in the LG and MG muscles during terrestrial locomotion (126 and 115 kPa, respectively), stresses were considerably greater in the LG compared with the MG during swimming (62 versus 34 kPa, respectively). During both steady swimming and terrestrial locomotion, the LG developed force while shortening over a considerable range of its length (swimming 23.6 % versus terrestrial 37.4 %). Activation of the muscle occurred near the end of passive lengthening during the recovery stroke, just prior to muscle shortening. As a result, the muscle generated broad positive work loops during both locomotor modes. LG work during swimming (4.8 J x kg(-1)) averaged 37 % of the work performed during terrestrial locomotion (13.1 J x kg(-1)), consistent with the twofold greater force and 58 % greater strain of the muscle during walking and running. Because limb cycle frequency was similar for the two locomotor modes (swimming 2.65 versus terrestrial 2.61 Hz), differences in power output (swimming 12.6 W x kg(-1 )versus terrestrial 32.4 W x kg(-1)) largely reflected difference in work per cycle. Tendon elastic energy savings was a small fraction (<5 %) of the work performed by the muscle, consistent with a fiber-tendon design of these two muscles that favors muscle work to produce limb movement with little tendon strain. These results are consistent with a higher cost of terrestrial locomotion in ducks compared with other, more cursorial birds that may operate their muscles more economically and achieve greater tendon elastic savings.
2000
Swaddle JP, Biewener AA. Exercise and reduced muscle mass in starlings. NatureNatureNature. 2000;406 :585-6.
Gillis GB, Biewener AA. Hindlimb extensor muscle function during jumping and swimming in the toad (Bufo marinus). J Exp BiolJ Exp BiolJ Exp Biol. 2000;203 :3547-63.Abstract
Many anurans use their hindlimbs to generate propulsive forces during both jumping and swimming. To investigate the musculoskeletal dynamics and motor output underlying locomotion in such physically different environments, we examined patterns of muscle strain and activity using sonomicrometry and electromyography, respectively, during jumping and swimming in the toad Bufo marinus. We measured strain and electromyographic (EMG) activity in four hindlimb muscles: the semimembranosus, a hip extensor; the plantaris, an ankle extensor; and the gluteus and cruralis, two knee extensors. During jumping, these four muscles are activated approximately simultaneously; however, joint extension appears to be temporally staggered, with the hip beginning to extend prior to or initially faster than the more distal knee and ankle joints. Mirroring this pattern, the gluteus and plantaris shorten quite slowly and over a small distance during the first half of limb extension during take-off, before beginning to shorten rapidly. The hip and knee extensors finish shortening near the point of take-off (when the feet leave the ground), while the ankle-extending plantaris, which exhibits the longest-duration EMG burst, on average, always completes its shortening after take-off (mean 26 ms). During swimming, activation of the four muscles is also nearly synchronous at the start of a propulsive stroke. The onset of fascicle shortening is temporally staggered, with the knee extensors beginning to shorten first, prior to the hip and ankle extensors. In addition, the knee extensors also often exhibit some degree of slow passive shortening prior to the onset of EMG activity. The offset of muscle shortening during swimming is also staggered, and to a much greater extent than during jumping. During swimming, the cruralis and gluteus finish shortening first, the semimembranosus finishes 30-60 ms later, and the plantaris, which again exhibits the longest EMG burst, finishes shortening last (mean 150 ms after the cruralis). Interestingly, much of this extended shortening in the plantaris occurs at a relatively slow velocity and may reflect passive ankle extension caused by fluid forces, associated with previously generated unsteady (accelerative) limb movements, acting on the foot. Average EMG burst intensity tends to be greater during jumping than during swimming in all muscles but the gluteus. However, EMG burst duration only changes between jumping and swimming in the cruralis (duration during jumping is nearly twice as long as during swimming). The cruralis is also the only muscle to exhibit substantially greater fractional shortening during jumping (mean 0.28) than during swimming (mean 0.20 active strain, 0.22 total strain). On the basis of these results, it appears that toad hindlimb function is altered between jumping and swimming. Moreover, these functional differences are influenced by passive effects associated with physical differences between the external environments, but are also actively mediated by shifts in the motor output and mechanical behavior of several muscles.
Biewener AA, Roberts TJ. Muscle and tendon contributions to force, work, and elastic energy savings: a comparative perspective. Exerc Sport Sci RevExerc Sport Sci RevExerc Sport Sci Rev. 2000;28 :99-107.Abstract
Muscle-tendon architecture underlies muscle function. Whereas muscles generally contribute most to mechanical work, tendons provide the majority of elastic energy savings. Isometric or eccentric contractions enhance force and further reduce energy cost. However, elastic savings is probably constrained by the need to reduce compliance for accurate control of position.
1999
Carrano MT, Biewener AA. Experimental alteration of limb posture in the chicken (Gallus gallus) and its bearing on the use of birds as analogs for dinosaur locomotion. J MorpholJ MorpholJ Morphol. 1999;240 :237-49.Abstract
Extant birds represent the only diverse living bipeds, and can be informative for investigations into the life-history parameters of their extinct dinosaurian relatives. However, morphological changes that occurred during early avian evolution, including the unique adoption of a nearly horizontal femoral orientation associated with a shift in center of mass (CM), suggest that caution is warranted in the use of birds as analogs for nonavian dinosaur locomotion. In this study, we fitted a group of white leghorn chickens (Gallus gallus) with a weight suspended posterior to the hip in order to examine the effects on loading and morphology. This caused a CM shift that necessitated a change in femoral posture (by 35 degrees towards the horizontal, P < 0.001), and resulted in reorientation of the ground reaction force (GRF) vector relative to the femur (from 41 degrees to 82 degrees, P < 0.001). Despite similar strain magnitudes, an overall increase in torsion relative to bending (from 1.70 to 1.95 times bending, P < 0.001) was observed, which was weakly associated with a tendency for increased femoral cross-sectional dimensions (P = 0.1). We suggest that a relative increase in torsion is consistent with a change in femoral posture towards the horizontal, since this change increases the degree to which the bone axis and the GRF vector produce mediolateral long-axis rotation of the bone. These results support the hypothesis that a postural change during early avian evolution could underlie the allometric differences seen between bird and nonavian dinosaur femora by requiring more robust femoral dimensions in birds due to an increase in torsion.
Blob RW, Biewener AA. In vivo locomotor strain in the hindlimb bones of alligator mississippiensis and iguana iguana: implications for the evolution of limb bone safety factor and non-sprawling limb posture. J Exp BiolJ Exp BiolJ Exp Biol. 1999;202 (Pt 9) :1023-46.Abstract
Limb postures of terrestrial tetrapods span a continuum from sprawling to fully upright; however, most experimental investigations of locomotor mechanics have focused on mammals and ground-dwelling birds that employ parasagittal limb kinematics, leaving much of the diversity of tetrapod locomotor mechanics unexplored. This study reports measurements of in vivo locomotor strain from the limb bones of lizard (Iguana iguana) and crocodilian (Alligator mississippiensis) species, animals from previously unsampled phylogenetic lineages with non-parasagittal limb posture and kinematics. Principal strain orientations and shear strain magnitudes indicate that the limb bones of these species experience considerable torsion during locomotion. This contrasts with patterns commonly observed in mammals, but matches predictions from kinematic observations of axial rotation in lizard and crocodilian limbs. Comparisons of locomotor load magnitudes with the mechanical properties of limb bones in Alligator and Iguana indicate that limb bone safety factors in bending for these species range from 5.5 to 10.8, as much as twice as high as safety factors previously calculated for mammals and birds. Limb bone safety factors in shear (3.9-5.4) for Alligator and Iguana are also moderately higher than safety factors to yield in bending for birds and mammals. Finally, correlations between limb posture and strain magnitudes in Alligator show that at some recording locations limb bone strains can increase during upright locomotion, in contrast to expectations based on size-correlated changes in posture among mammals that limb bone strains should decrease with the use of an upright posture. These data suggest that, in some lineages, strain magnitudes may not have been maintained at constant levels through the evolution of a non-sprawling posture unless the postural change was accompanied by a shift to parasagittal kinematics or by an evolutionary decrease in body size.
Biewener AA, Gillis GB. Dynamics of muscle function during locomotion: accommodating variable conditions. J Exp BiolJ Exp BiolJ Exp Biol. 1999;202 :3387-96.Abstract
Much of what we know about animal locomotion is derived from studies examining animals moving within a single, homogeneous environment, at a steady speed and along a flat grade. As a result, the issue of how musculoskeletal function might shift to accommodate variability within the external environment has remained relatively unexplored. One possibility is that locomotor muscles are differentially recruited depending upon the environment in which the animal is moving. A second possibility is that the same muscles are recruited, but that they are activated in a different manner so that their contractile function differs according to environment. Finally, it is also possible that, in some cases, animals may not need to alter their musculoskeletal function to move under different external conditions. In this case, however, the mechanical behavior appropriate for one environmental condition may constrain locomotor performance in another. To begin to explore the means by which animals accommodate variable conditions in their environment, we present three case studies examining how musculoskeletal systems function to allow locomotion under variable conditions: (1) eels undulating through water and across land, (2) turkeys running on level and inclined surfaces, and (3) ducks using their limbs to walk and to paddle. In all three of these examples, the mechanical behavior of some muscle(s) involved in locomotion are altered, although to different degrees and in different ways. In the running turkeys, the mechanical function of a major ankle extensor muscle shifts from contracting isometrically on a flat surface (producing little work and power), to shortening actively during contraction on an uphill gradient (increasing the amount of work and power generated). In the ducks, the major ankle extensor undergoes the same general pattern of activation and shortening in water and on land, except that the absolute levels of muscle stress and strain and work output are greater during terrestrial locomotion. In eels, a transition to land elicits changes in electromyographic duty cycles and the relative timing of muscle activation, suggesting some alteration in the functional mechanics of the underlying musculature. Only by studying muscle function in animals moving under more variable conditions can we begin to characterize the functional breadth of the vertebrate musculoskeletal system and understand more fully its evolutionary design.
1998
Konieczynski DD, Truty MJ, Biewener AA. Evaluation of a bone's in vivo 24-hour loading history for physical exercise compared with background loading. J Orthop ResJ Orthop ResJ Orthop Res. 1998;16 :29-37.Abstract
The present study sought to answer two research questions. First, how distinctive, as a potential osteogenic stimulus, are short-duration bouts of treadmill exercise relative to sedentary background activity? Second, how well does daily effective strain stimulus relate the loading history for one such exercise program, in comparison with other experimental loading programs, to bone formation? In vivo cortical strains were measured in the tibiotarsus of White Leghorn chickens at a late stage of skeletal growth (14-34 weeks old) under the conditions of a previous investigation of bone formation in response to an exercise program (15 min/day, treadmill gait at 60% maximum speed while carrying 20% body mass) that included sedentary background activity. These strain data were compiled into 24-hour loading histories of peak cyclic strain, demonstrating that strains were statistically different for exercise and background activities (p < 0.0001), with both the magnitude and number of cyclic strain events being greater during exercise (generally greater than 500 microstrain, 2,500 cycles/day) than during background activity (generally less than 500 microstrain, mean: 775 cycles/day). Strains during exercise accounted for more than 97% of the daily effective strain stimulus for bone adaptation, despite the fact that exercise comprised only 1% of the daily period (15 min/day). The levels of the daily effective strain stimulus were similar to those calculated for strains engendered by artificial loading of functionally isolated avian ulnae, which either maintained bone mass or resulted in a 15% increase of cortical cross-sectional area in both sets of studies. These results indicate that short-duration bouts of treadmill exercise and sedentary background activity can represent distinct osteogenic stimuli for adaptive bone modeling. They also provide experimental support for the use of a daily effective strain stimulus to quantify skeletal loading histories for differing programs of physical exercise, although the relative importance of other mechanical and nonmechanical factors requires further investigation.
Corning WR, Biewener AA. In vivo strains in pigeon flight feather shafts: implications for structural design. J Exp BiolJ Exp BiolJ Exp Biol. 1998;201 (Pt 22) :3057-65.Abstract
To evaluate the safety factor for flight feather shafts, in vivo strains were recorded during free flight from the dorsal surface of a variety of flight feathers of captive pigeons (Columba livia) using metal foil strain gauges. Strains recorded while the birds flew at a slow speed (approximately 5-6 m s-1) were used to calculate functional stresses on the basis of published values for the elastic modulus of feather keratin. These stresses were then compared with measurements of the failure stress obtained from four-point bending tests of whole sections of the rachis at a similar location. Recorded strains followed an oscillatory pattern, changing from tensile strain during the upstroke to compressive strain during the downstroke. Peak compressive strains were 2.2+/-0. 9 times (mean +/- s.d.) greater than peak tensile strains. Tensile strain peaks were generally not as large in more proximal flight feathers. Maximal compressive strains averaged -0.0033+/-0.0012 and occurred late in the downstroke. Bending tests demonstrated that feather shafts are most likely to fail through local buckling of their compact keratin cortex. A comparison of the mean (8.3 MPa) and maximum (15.7 MPa) peak stresses calculated from the in vivo strain recordings with the mean failure stress measured in four-point bending (137 MPa) yields a safety factor of between 9 and 17. Under more strenuous flight conditions, feather stresses are estimated to be 1.4-fold higher, reducing their safety factor to the range 6-12. These values seem high, considering that the safety factor of the humerus of pigeons has been estimated to be between 1.9 and 3.5. Several hypotheses explaining this difference in safety factor are considered, but the most reasonable explanation appears to be that flexural stiffness is more critical than strength to feather shaft performance.
Biewener AA, Konieczynski DD, Baudinette RV. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. J Exp BiolJ Exp BiolJ Exp Biol. 1998;201 :1681-94.Abstract
Moderate to large macropodids can increase their speed while hopping with little or no increase in energy expenditure. This has been interpreted by some workers as resulting from elastic energy savings in their hindlimb tendons. For this to occur, the muscle fibers must transmit force to their tendons with little or no length change. To test whether this is the case, we made in vivo measurements of muscle fiber length change and tendon force in the lateral gastrocnemius (LG) and plantaris (PL) muscles of tammar wallabies Macropus eugenii as they hopped at different speeds on a treadmill. Muscle fiber length changes were less than +/-0.5 mm in the plantaris and +/-2.2 mm in the lateral gastrocnemius, representing less than 2 % of total fiber length in the plantaris and less than 6 % in the lateral gastrocnemius, with respect to resting length. The length changes of the plantaris fibers suggest that this occurred by means of elastic extension of attached cross-bridges. Much of the length change in the lateral gastrocnemius fibers occurred at low force early in the stance phase, with generally isometric behavior at higher forces. Fiber length changes did not vary significantly with increased hopping speed in either muscle (P>0.05), despite a 1. 6-fold increase in muscle-tendon force between speeds of 2.5 and 6.0 m s-1. Length changes of the PL fibers were only 7+/-4 % and of the LG fibers 34+/-12 % (mean +/- S.D., N=170) of the stretch calculated for their tendons, resulting in little net work by either muscle (plantaris 0.01+/-0.03 J; gastrocnemius -0.04+/-0.30 J; mean +/- s.d. ). In contrast, elastic strain energy stored in the tendons increased with increasing speed and averaged 20-fold greater than the shortening work performed by the two muscles. These results show that an increasing amount of strain energy stored within the hindlimb tendons is usefully recovered at faster steady hopping speeds, without being dissipated by increased stretch of the muscles' fibers. This finding supports the view that tendon elastic saving of energy is an important mechanism by which this species is able to hop at faster speeds with little or no increase in metabolic energy expenditure.
Biewener AA, Corning WR, Tobalske BW. In vivo pectoralis muscle force-length behavior during level flight in pigeons (Columba livia). J Exp BiolJ Exp BiolJ Exp Biol. 1998;201 (Pt 24) :3293-307.Abstract
For the first time, we report in vivo measurements of pectoralis muscle length change obtained using sonomicrometry combined with measurements of its force development via deltopectoral crest strain recordings of a bird in free flight. These measurements allow us to characterize the contractile behavior and mechanical power output of the pectoralis under dynamic conditions of slow level flight in pigeons Columba livia. Our recordings confirm that the pigeon pectoralis generates in vivo work loops that begin with the rapid development of force as the muscle is being stretched or remains nearly isometric near the end of the upstroke. The pectoralis then shortens by a total of 32 % of its resting length during the downstroke, generating an average of 10.33.6 J kg-1 muscle (mean s.d.) of work per cycle for the anterior and posterior sites recorded among the five animals. In contrast to previous kinematic estimates of muscle length change relative to force development, the sonomicrometry measurements of fascicle length change show that force declines during muscle shortening. Simultaneous measurements of fascicle length change at anterior and posterior sites within the same muscle show significant (P<0.001, three of four animals) differences in fractional length (strain) change that averaged 1912 %, despite exhibiting similar work loop shape. Length changes at both anterior and posterior sites were nearly synchronous and had an asymmetrical pattern, with shortening occupying 63 % of the cycle. This nearly 2:1 phase ratio of shortening to lengthening probably favors the ability of the muscle to do work. Mean muscle shortening velocity was 5.381.33 and 4.881.27 lengths s-1 at the anterior and posterior sites respectively. Length excursions of the muscle were more variable at the end of the downstroke (maximum shortening), particularly when the birds landed, compared with highly uniform length excursions at the end of the upstroke (maximum lengthening). When averaged for the muscle as a whole, our in vivo work measurements yield a mass-specific net mechanical power output of 70. 2 W kg-1 for the muscle when the birds flew at 5-6 m s-1, with a wingbeat frequency of 8.7 Hz. This is 38 % greater than the value that we obtained previously for wild-type pigeons, but still 24-50 % less than that predicted by theory.
Biewener AA. Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Physiol B Biochem Mol BiolComp Biochem Physiol B Biochem Mol BiolComp Biochem Physiol B Biochem Mol Biol. 1998;120 :73-87.Abstract
The stresses acting in muscle-tendon units and ligaments of the forelimb and hindlimb of horses were determined over a range of speed and gait based on recordings of ground reaction forces and limb kinematics. Maximum stresses of 40-50 MPa were calculated to act in several of the principal forelimb (superficial digital flexor (SDF), deep digital flexor (DDF), ulnaris lateralis (UL) and flexor carpi ulnaris/radialis (FCU/R)) and hindlimb tendons (plantaris, DDF) at the fastest galloping speeds recorded (up to 7.4 m s-1). Smaller stresses were found for the gastrocnemius (GAST) tendon (30 MPa) and suspensory ligaments (S-Ligs) (18-25 MPa). Average peak muscle stresses reached 200-240 kPa during galloping. Tendon and muscle stresses increased more steeply with changes of gait and during galloping, than during trotting. Calculations of elastic strain energy storage based on tendon stress showed similar patterns of increase with change of speed and gait, with the greatest contribution to elastic savings by the DDF tendons of the forelimb and hindlimb. In general, the hindlimb contributed two-thirds and the forelimb one-third to overall energy storage. Comparison of tendon elastic energy savings with mechanical work showed a maximum 40% recovery of mechanical work by elastic savings when the horses changed gait from a walk to a slow trot. Percentage of recovery then decreased with increased trotting speed, but increased again with a change of gait to a gallop, reaching 36% recovery at the fastest measured galloping speed (7.4 m s-1). The long length of horse tendons in relation to extremely short pennate muscle fibers suggests a highly specialized design for economical muscle force generation and enhanced elastic energy savings. However, elastic energy savings in terms of percentage of recovery of mechanical work and metabolic energy is less than that observed in wallabies and kangaroos during hopping, but similar to that in humans during running, and greater than that for dogs during trotting and galloping.

Pages