Clites TR, Arnold AS, Singh NM, Kline E, H.Chen, Tugman C, Billadeau B, Biewener AA, Herr HM.
Goats Decrease Hindlimb Stiffness When Walking Over Compliant Surfaces. Journal of Experimental Biology. 2019.
AbstractLeg stiffness, commonly estimated as the 'compression' of a defined leg element in response to a load, has long been used to characterize terrestrial locomotion. This study investigated how goats adjust the stiffness of their hindlimbs to accommodate surfaces of different stiffness. Goats provide a compelling animal model for studying leg stiffness modulation, because they skillfully ambulate over a range of substrates that vary in compliance. To investigate the adjustments that goats make when walking over such substrates, ground reaction forces and three-dimensional trajectories of hindlimb markers were recorded as goats walked on rigid, rubber and foam surfaces. Net joint moments, power and work at the hip, knee, ankle and metatarsophalangeal joints were estimated throughout stance via inverse dynamics. Hindlimb stiffness was estimated from plots of total leg force versus total leg length, and individual joint stiffness was estimated from plots of joint moment versus joint angle. Our results support the hypothesis that goats modulate hindlimb stiffness in response to surface stiffness; specifically, hindlimb stiffness decreased on the more compliant surfaces (P<0.002). Estimates of joint stiffness identified hip and ankle muscles as the primary drivers of these adjustments. When humans run on compliant surfaces, they generally increase leg stiffness to preserve their center-of-mass mechanics. We did not estimate center-of-mass mechanics in this study; nevertheless, our estimates of hindlimb stiffness suggest that goats exhibit a different behavior. This study offers new insight into mechanisms that allow quadrupeds to modulate their gait mechanics when walking on surfaces of variable compliance.
Eng CM, Konow N, Tijs C, Holt NC, Biewener AA.
In vivo force–length and activation dynamics of two distal rat hindlimb muscles in relation to gait and grade. Journal of Experimental Biology [Internet]. 2019.
Publisher's VersionAbstractMuscle function changes to meet the varying mechanical demands of locomotion across different gait and grade conditions. A muscle's work output is determined by time-varying patterns of neuromuscular activation, muscle force and muscle length change, but how these patterns change under different conditions in small animals is not well defined. Here, we report the first integrated in vivo force–length and activation patterns in rats, a commonly used small animal model, to evaluate the dynamics of two distal hindlimb muscles (medial gastrocnemius and plantaris) across a range of gait (walk, trot and gallop) and grade (level and incline) conditions. We use these data to explore how the pattern of force production, muscle activation and muscle length changes across conditions in a small quadrupedal mammal. As hypothesized, we found that the rat muscles show limited fascicle strains during active force generation in stance across gaits and grades, indicating that these distal rat muscles generate force economically but perform little work, similar to patterns observed in larger animals during level locomotion. Additionally, given differences in fiber type composition and variation in motor unit recruitment across the gait and grade conditions examined here for these muscles, the in vivo force–length behavior and neuromuscular activation data reported here can be used to validate improved two-element Hill-type muscle models.
McHorse BK, Biewener AA, Pierce SE.
The evolution of a single toe in horses: causes, consequences, and the way forward. Integrative & Compartive Biology [Internet]. 2019;icz050 (10.1093) :1-18.
Publisher's Version Kessler SE, Rainbow MJ, Lichtwark GA, Cresswell AG, D'Andrea SE, Konow N, Kelly LA.
A Direct Comparison of Biplanar Videoradiography and Optical Motion Capture for Foot and Ankle Kinematics. Frontiers in Bioengineering and Biotechnology [Internet]. 2019;7 (199) :1-10.
Publisher's VersionAbstractMeasuring motion of the human foot presents a unique challenge due to the large number of closely packed bones with congruent articulating surfaces. Optical motion capture (OMC) and multi-segment models can be used to infer foot motion, but might be affected by soft tissue artifact (STA). Biplanar videoradiography (BVR) is a relatively new tool that allows direct, non-invasive measurement of bone motion using high-speed, dynamic x-ray images to track individual bones. It is unknown whether OMC and BVR can be used interchangeably to analyse multi-segment foot motion. Therefore, the aim of this study was to determine the agreement in kinematic measures of dynamic activities. Nine healthy participants performed three walking and three running trials while BVR was recorded with synchronous OMC. Bone position and orientation was determined through manual scientific-rotoscoping. The OMC and BVR kinematics were co-registered to the same coordinate system, and BVR tracking was used to create virtual markers for comparison to OMC during dynamic trials. Root mean square (RMS) differences in marker positions and joint angles as well as a linear fit method (LFM) was used to compare the outputs of both methods. When comparing BVR and OMC, sagittal plane angles were in good agreement (ankle: R2 = 0.947, 0.939; Medial Longitudinal Arch (MLA) Angle: R2 = 0.713, 0.703, walking and running, respectively). When examining the ankle, there was a moderate agreement between the systems in the frontal plane (R2 = 0.322, 0.452, walking and running, respectively), with a weak to moderate correlation for the transverse plane (R2 = 0.178, 0.326, walking and running, respectively). However, root mean squared error (RMSE) showed angular errors ranging from 1.06 to 8.31° across the planes (frontal: 3.57°, 3.67°, transverse: 4.28°, 4.70°, sagittal: 2.45°, 2.67°, walking and running, respectively). Root mean square (RMS) differences between OMC and BVR marker trajectories were task dependent with the largest differences in the shank (6.0 ± 2.01 mm) for running, and metatarsals (3.97 ± 0.81 mm) for walking. Based on the results, we suggest BVR and OMC provide comparable solutions to foot motion in the sagittal plane, however, interpretations of out-of-plane movement should be made carefully.
Witzmann F, Brainerd EL, Konow N.
Eye Movements in Frogs and Salamanders—Testing the Palatal Buccal Pump Hypothesis. Integrative Organismal Biology [Internet]. 2019;1 (1).
Publisher's VersionAbstractIn frogs and salamanders, movements of the eyeballs in association with an open palate have often been proposed to play a functional role in lung breathing. In this “palatal buccal pump,” the eyeballs are elevated during the lowering of the buccal floor to suck air in through the nares, and the eyeballs are lowered during elevation of the buccal floor to help press air into the lungs. Here, we used X-Ray Reconstruction of Moving Morphology to investigate eye movements during lung breathing and feeding in bullfrogs and axolotls. Our data do not show eye movements that would be in accordance with the palatal buccal pump. On the contrary, there is a small passive elevation of the eyeballs when the buccal floor is raised. Inward drawing of the eyeballs occurs only during body motion and for prey transport in bullfrogs, but this was not observed in axolotls. Each eye movement in bullfrogs has a vertical, a mediolateral, and an anteroposterior component. Considering the surprisingly weak posterior motion component of the eyeballs, their main role in prey transport might be fixing the prey by pressing it against the buccal floor. The retraction of the buccal floor would then contribute to the posterior push of the prey. Because our study provides no evidence for a palatal buccal pump in frogs and salamanders, there is also no experimental support for the idea of a palatal buccal pump in extinct temnospondyl amphibians, in contrast to earlier suggestions.
Heiss E, Schwartz D, Konow N.
Chewing or not? Intraoral food processing in a salamandrid newt. Journal of Experimental Biology [Internet]. 2019;222.
Publisher's Version Clites TR, Arnold AS, Singh NM, H.Chen, Tugman C, Billadeau B, Biewener AA, Herr HM.
Goats decrease hindlimb stiffness when walking over compliant surfaces. Journal of Experimental Biology [Internet]. 2019;222.
Publisher's Version