Publications

2014
Eng CM, Pancheri FQ, Lieberman DE, Biewener AA, Dorfmann L. Directional differences in the biaxial material properties of fascia lata and the implications for fascia function. Ann Biomed EngAnn Biomed EngAnn Biomed Eng. 2014;42 :1224-37.Abstract
Fascia is a highly organized collagenous tissue that is ubiquitous in the body, but whose function is not well understood. Because fascia has a sheet-like structure attaching to muscles and bones at multiple sites, it is exposed to different states of multi- or biaxial strain. In order to measure how biaxial strain affects fascia material behavior, planar biaxial tests with strain control were performed on longitudinal and transversely oriented samples of goat fascia lata (FL). Cruciform samples were cycled to multiple strain levels while the perpendicular direction was held at a constant strain. Structural differences among FL layers were examined using histology and SEM. Results show that FL stiffness, hysteresis, and strain energy density are greater in the longitudinal vs. transverse direction. Increased stiffness in the longitudinal layer is likely due to its greater thickness and greater average fibril diameter compared to the transverse layer(s). Perpendicular strain did not affect FL material behavior. Differential loading in the longitudinal vs. transverse directions may lead to structural changes, enhancing the ability of the longitudinal FL to transmit force, store energy, or stabilize the limb during locomotion. The relative compliance of the transverse fibers may allow expansion of underlying muscles when they contract.
Biewener AA, Wakeling JM, Lee SS, Arnold AS. Validation of Hill-type muscle models in relation to neuromuscular recruitment and force-velocity properties: predicting patterns of in vivo muscle force. Integr Comp BiolIntegr Comp BiolIntegr Comp Biol. 2014;54 :1072-83.Abstract
We review here the use and reliability of Hill-type muscle models to predict muscle performance under varying conditions, ranging from in situ production of isometric force to in vivo dynamics of muscle length change and force in response to activation. Muscle models are frequently used in musculoskeletal simulations of movement, particularly when applied to studies of human motor performance in which surgically implanted transducers have limited use. Musculoskeletal simulations of different animal species also are being developed to evaluate comparative and evolutionary aspects of locomotor performance. However, such models are rarely validated against direct measures of fascicle strain or recordings of muscle-tendon force. Historically, Hill-type models simplify properties of whole muscle by scaling salient properties of single fibers to whole muscles, typically accounting for a muscle's architecture and series elasticity. Activation of the model's single contractile element (assigned the properties of homogenous fibers) is also simplified and is often based on temporal features of myoelectric (EMG) activation recorded from the muscle. Comparison of standard one-element models with a novel two-element model and with in situ and in vivo measures of EMG, fascicle strain, and force recorded from the gastrocnemius muscles of goats shows that a two-element Hill-type model, which allows independent recruitment of slow and fast units, better predicts temporal patterns of in situ and in vivo force. Recruitment patterns of slow/fast units based on wavelet decomposition of EMG activity in frequency-time space are generally correlated with the intensity spectra of the EMG signals, the strain rates of the fascicles, and the muscle-tendon forces measured in vivo, with faster units linked to greater strain rates and to more rapid forces. Using direct measures of muscle performance to further test Hill-type models, whether traditional or more complex, remains critical for establishing their accuracy and essential for verifying their applicability to scientific and clinical studies of musculoskeletal function.
2013
Lee SS, de Boef Miara M, Arnold AS, Biewener AA, Wakeling JM. Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion. J Exp BiolJ Exp BiolJ Exp Biol. 2013;216 :198-207.Abstract
Animals modulate the power output needed for different locomotor tasks by changing muscle forces and fascicle strain rates. To generate the necessary forces, appropriate motor units must be recruited. Faster motor units have faster activation-deactivation rates than slower motor units, and they contract at higher strain rates; therefore, recruitment of faster motor units may be advantageous for tasks that involve rapid movements or high rates of work. This study identified motor unit recruitment patterns in the gastrocnemii muscles of goats and examined whether faster motor units are recruited when locomotor speed is increased. The study also examined whether locomotor tasks that elicit faster (or slower) motor units are associated with increased (or decreased) in vivo tendon forces, force rise and relaxation rates, fascicle strains and/or strain rates. Electromyography (EMG), sonomicrometry and muscle-tendon force data were collected from the lateral and medial gastrocnemius muscles of goats during level walking, trotting and galloping and during inclined walking and trotting. EMG signals were analyzed using wavelet and principal component analyses to quantify changes in the EMG frequency spectra across the different locomotor conditions. Fascicle strain and strain rate were calculated from the sonomicrometric data, and force rise and relaxation rates were determined from the tendon force data. The results of this study showed that faster motor units were recruited as goats increased their locomotor speeds from level walking to galloping. Slow inclined walking elicited EMG intensities similar to those of fast level galloping but different EMG frequency spectra, indicating that recruitment of the different motor unit types depended, in part, on characteristics of the task. For the locomotor tasks and muscles analyzed here, recruitment patterns were generally associated with in vivo fascicle strain rates, EMG intensity and tendon force. Together, these data provide new evidence that changes in motor unit recruitment have an underlying mechanical basis, at least for certain locomotor tasks.
Lee SS, Arnold AS, Miara Mde B, Biewener AA, Wakeling JM. Accuracy of gastrocnemius muscles forces in walking and running goats predicted by one-element and two-element Hill-type models. J BiomechJ BiomechJ Biomech. 2013;46 :2288-95.Abstract
Hill-type models are commonly used to estimate muscle forces during human and animal movement-yet the accuracy of the forces estimated during walking, running, and other tasks remains largely unknown. Further, most Hill-type models assume a single contractile element, despite evidence that faster and slower motor units, which have different activation-deactivation dynamics, may be independently or collectively excited. This study evaluated a novel, two-element Hill-type model with "differential" activation of fast and slow contractile elements. Model performance was assessed using a comprehensive data set (including measures of EMG intensity, fascicle length, and tendon force) collected from the gastrocnemius muscles of goats during locomotor experiments. Muscle forces predicted by the new two-element model were compared to the forces estimated using traditional one-element models and to the forces measured in vivo using tendon buckle transducers. Overall, the two-element model resulted in the best predictions of in vivo gastrocnemius force. The coefficient of determination, r(2), was up to 26.9% higher and the root mean square error, RMSE, was up to 37.4% lower for the two-element model than for the one-element models tested. All models captured salient features of the measured muscle force during walking, trotting, and galloping (r(2)=0.26-0.51), and all exhibited some errors (RMSE=9.63-32.2% of the maximum in vivo force). These comparisons provide important insight into the accuracy of Hill-type models. The results also show that incorporation of fast and slow contractile elements within muscle models can improve estimates of time-varying, whole muscle force during locomotor tasks.
Arnold AS, Lee DV, Biewener AA. Modulation of joint moments and work in the goat hindlimb with locomotor speed and surface grade. J Exp BiolJ Exp BiolJ Exp Biol. 2013;216 :2201-12.Abstract
Goats and other quadrupeds must modulate the work output of their muscles to accommodate the changing mechanical demands associated with locomotion in their natural environments. This study examined which hindlimb joint moments goats use to generate and absorb mechanical energy on level and sloped surfaces over a range of locomotor speeds. Ground reaction forces and the three-dimensional locations of joint markers were recorded as goats walked, trotted and galloped over 0, +15 and -15 deg sloped surfaces. Net joint moments, powers and work were estimated at the goats' hip, knee, ankle and metatarsophalangeal joints throughout the stance phase via inverse dynamics calculations. Differences in locomotor speed on the level, inclined and declined surfaces were characterized and accounted for by fitting regression equations to the joint moment, power and work data plotted versus non-dimensionalized speed. During level locomotion, the net work generated by moments at each of the hindlimb joints was small (less than 0.1 J kg(-1) body mass) and did not vary substantially with gait or locomotor speed. During uphill running, by contrast, mechanical energy was generated at the hip, knee and ankle, and the net work at each of these joints increased dramatically with speed (P<0.05). The greatest increases in positive joint work occurred at the hip and ankle. During downhill running, mechanical energy was decreased in two main ways: goats generated larger knee extension moments in the first half of stance, absorbing energy as the knee flexed, and goats generated smaller ankle extension moments in the second half of stance, delivering less energy. The goats' hip extension moment in mid-stance was also diminished, contributing to the decrease in energy. These analyses offer new insight into quadrupedal locomotion, clarifying how the moments generated by hindlimb muscles modulate mechanical energy at different locomotor speeds and grades, as needed to accommodate the demands of variable terrain.
2012
Wakeling JM, Lee SS, Arnold AS, de Boef Miara M, Biewener AA. A muscle's force depends on the recruitment patterns of its fibers. Ann Biomed EngAnn Biomed EngAnn Biomed Eng. 2012;40 :1708-20.Abstract
Biomechanical models of whole muscles commonly used in simulations of musculoskeletal function and movement typically assume that the muscle generates force as a scaled-up muscle fiber. However, muscles are comprised of motor units that have different intrinsic properties and that can be activated at different times. This study tested whether a muscle model comprised of motor units that could be independently activated resulted in more accurate predictions of force than traditional Hill-type models. Forces predicted by the models were evaluated by direct comparison with the muscle forces measured in situ from the gastrocnemii in goats. The muscle was stimulated tetanically at a range of frequencies, muscle fiber strains were measured using sonomicrometry, and the activation patterns of the different types of motor unit were calculated from electromyographic recordings. Activation patterns were input into five different muscle models. Four models were traditional Hill-type models with different intrinsic speeds and fiber-type properties. The fifth model incorporated differential groups of fast and slow motor units. For all goats, muscles and stimulation frequencies the differential model resulted in the best predictions of muscle force. The in situ muscle output was shown to depend on the recruitment of different motor units within the muscle.
Robertson AM, Biewener AA. Muscle function during takeoff and landing flight in the pigeon (Columba livia). J Exp BiolJ Exp BiolJ Exp Biol. 2012;215 :4104-14.Abstract
This study explored the muscle strain and activation patterns of several key flight muscles of the pigeon (Columba livia) during takeoff and landing flight. Using electromyography (EMG) to measure muscle activation, and sonomicrometry to quantify muscle strain, we evaluated the muscle function patterns of the pectoralis, biceps, humerotriceps and scapulotriceps as pigeons flew between two perches. These recordings were analyzed in the context of three-dimensional wing kinematics. To understand the different requirements of takeoff, midflight and landing, we compared the activity and strain of these muscles among the three flight modes. The pectoralis and biceps exhibited greater fascicle strain rates during takeoff than during midflight or landing. However, the triceps muscles did not exhibit notable differences in strain among flight modes. All observed strain, activation and kinematics were consistent with hypothesized muscle functions. The biceps contracted to stabilize and flex the elbow during the downstroke. The humerotriceps contracted to extend the elbow at the upstroke-downstroke transition, followed by scapulotriceps contraction to maintain elbow extension during the downstroke. The scapulotriceps also appeared to contribute to humeral elevation. Greater muscle activation intensity was observed during takeoff, compared with mid-flight and landing, in all muscles except the scapulotriceps. The timing patterns of muscle activation and length change differed among flight modes, yet demonstrated that pigeons do not change the basic mechanical actions of key flight muscles as they shift from flight activities that demand energy production, such as takeoff and midflight, to maneuvers that require absorption of energy, such as landing. Similarly, joint kinematics were consistent among flight modes. The stereotypy of these neuromuscular and joint kinematic patterns is consistent with previously observed stereotypy of wing kinematics relative to the pigeon's body (in the local body frame) across these flight behaviors. Taken together, these observations suggest that the control of takeoff and landing flight primarily involves modulation of overall body pitch to effect changes in stroke plane angle and resulting wing aerodynamics.
Hedrick TL, Tobalske BW, Ros IG, Warrick DR, Biewener AA. Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio. Proc Biol SciProc Biol SciProc Biol Sci. 2012;279 :1986-92.Abstract
Hummingbirds (Trochilidae) are widely known for their insect-like flight strokes characterized by high wing beat frequency, small muscle strains and a highly supinated wing orientation during upstroke that allows for lift production in both halves of the stroke cycle. Here, we show that hummingbirds achieve these functional traits within the limits imposed by a vertebrate endoskeleton and muscle physiology by accentuating a wing inversion mechanism found in other birds and using long-axis rotational movement of the humerus. In hummingbirds, long-axis rotation of the humerus creates additional wing translational movement, supplementing that produced by the humeral elevation and depression movements of a typical avian flight stroke. This adaptation increases the wing-to-muscle-transmission ratio, and is emblematic of a widespread scaling trend among flying animals whereby wing-to-muscle-transmission ratio varies inversely with mass, allowing animals of vastly different sizes to accommodate aerodynamic, biomechanical and physiological constraints on muscle-powered flapping flight.
Biewener AA, Dickinson MH, Lauder GV. Editorial policy on computational, simulation and/or robotic papers. J Exp BiolJ Exp BiolJ Exp Biol. 2012;215 :4051.
2011
Ros IG, Bassman LC, Badger MA, Pierson AN, Biewener AA. Pigeons steer like helicopters and generate down- and upstroke lift during low speed turns. Proc Natl Acad Sci U S AProc Natl Acad Sci U S AProc Natl Acad Sci U S A. 2011;108 :19990-5.Abstract
Turning is crucial for animals, particularly during predator-prey interactions and to avoid obstacles. For flying animals, turning consists of changes in (i) flight trajectory, or path of travel, and (ii) body orientation, or 3D angular position. Changes in flight trajectory can only be achieved by modulating aerodynamic forces relative to gravity. How birds coordinate aerodynamic force production relative to changes in body orientation during turns is key to understanding the control strategies used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic forces in a uniform direction relative to their bodies, requiring changes in body orientation to redirect those forces to turn. Using detailed 3D kinematics and body mass distributions, we examined net aerodynamic forces and body orientations in slowly flying pigeons (Columba livia) executing level 90 degrees turns. The net aerodynamic force averaged over the downstroke was maintained in a fixed direction relative to the body throughout the turn, even though the body orientation of the birds varied substantially. Early in the turn, changes in body orientation primarily redirected the downstroke aerodynamic force, affecting the bird's flight trajectory. Subsequently, the pigeon mainly reacquired the body orientation used in forward flight without affecting its flight trajectory. Surprisingly, the pigeon's upstroke generated aerodynamic forces that were approximately 50% of those generated during the downstroke, nearly matching the relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed turns much like helicopters, by using whole-body rotations to alter the direction of aerodynamic force production to change their flight trajectory.
Lee SS, Miara Mde B, Arnold AS, Biewener AA, Wakeling JM. EMG analysis tuned for determining the timing and level of activation in different motor units. J Electromyogr KinesiolJ Electromyogr KinesiolJ Electromyogr Kinesiol. 2011;21 :557-65.Abstract
Recruitment patterns and activation dynamics of different motor units greatly influence the temporal pattern and magnitude of muscle force development, yet these features are not often considered in muscle models. The purpose of this study was to characterize the recruitment and activation dynamics of slow and fast motor units from electromyographic (EMG) recordings and twitch force profiles recorded directly from animal muscles. EMG and force data from the gastrocnemius muscles of seven goats were recorded during in vivo tendon-tap reflex and in situ nerve stimulation experiments. These experiments elicited EMG signals with significant differences in frequency content (p<0.001). The frequency content was characterized using wavelet and principal components analysis, and optimized wavelets with centre frequencies, 149.94 Hz and 323.13 Hz, were obtained. The optimized wavelets were used to calculate the EMG intensities and, with the reconstructed twitch force profiles, to derive transfer functions for slow and fast motor units that estimate the activation state of the muscle from the EMG signal. The resulting activation-deactivation time constants gave r values of 0.98-0.99 between the activation state and the force profiles. This work establishes a framework for developing improved muscle models that consider the intrinsic properties of slow and fast fibres within a mixed muscle, and that can more accurately predict muscle force output from EMG.
Lee DV, Biewener AA. BigDog-inspired studies in the locomotion of goats and dogs. Integr Comp BiolIntegr Comp BiolIntegr Comp Biol. 2011;51 :190-202.Abstract
Collision-based expenditure of mechanical energy and the compliance and geometry of the leg are fundamental, interrelated considerations in the mechanical design of legged runners. This article provides a basic context and rationale for experiments designed to inform each of these key areas in Boston Dynamic's BigDog robot. Although these principles have been investigated throughout the past few decades within different academic disciplines, BigDog required that they be considered together and in concert with an impressive set of control algorithms that are not discussed here. Although collision reduction is an important strategy for reducing mechanical cost of transport in the slowest and fastest quadrupedal gaits, walking and galloping, BigDog employed an intermediate-speed trotting gait without collision reduction. Trotting, instead, uses a spring-loaded inverted pendulum mechanism with potential for storage and return of elastic strain energy in appropriately compliant structures. Rather than tuning BigDog's built-in leg springs according to a spring-mass model-based virtual leg-spring constant , a much stiffer distal leg spring together with actuation of the adjacent joint provided good trotting dynamics and avoided functional limitations that might have been imposed by too much compliance in real-world terrain. Adjusting the directional compliance of the legs by adopting a knee-forward, elbow-back geometry led to more robust trotting dynamics by reducing perturbations about the pitch axis of the robot's center of mass (CoM). BigDog is the most successful large-scale, all-terrain trotting machine built to date and it continues to stimulate our understanding of legged locomotion in comparative biomechanics as well as in robotics.
Lee DV, Bertram JE, Anttonen JT, Ros IG, Harris SL, Biewener AA. A collisional perspective on quadrupedal gait dynamics. J R Soc InterfaceJ R Soc InterfaceJ R Soc Interface. 2011;8 :1480-6.Abstract
The analysis of terrestrial locomotion over the past half century has focused largely on strategies of mechanical energy recovery used during walking and running. In contrast, we describe the underlying mechanics of legged locomotion as a collision-like interaction that redirects the centre of mass (CoM). We introduce the collision angle, determined by the angle between the CoM force and velocity vectors, and show by computing the collision fraction, a ratio of actual to potential collision, that the quadrupedal walk and gallop employ collision-reduction strategies while the trot permits greater collisions. We provide the first experimental evidence that a collision-based approach can differentiate quadrupedal gaits and quantify interspecific differences. Furthermore, we show that this approach explains the physical basis of a commonly used locomotion metric, the mechanical cost of transport. Collision angle and collision fraction provide a unifying analysis of legged locomotion which can be applied broadly across animal size, leg number and gait.
Higham TE, Biewener AA. Functional and architectural complexity within and between muscles: regional variation and intermuscular force transmission. Philos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol Sci. 2011;366 :1477-87.Abstract
Over the past 30 years, studies of single muscles have revealed complex patterns of regional variation in muscle architecture, activation, strain and force. In addition, muscles are often functionally integrated with other muscles in parallel or in series. Understanding the extent of this complexity and the interactions between muscles will profoundly influence how we think of muscles in relation to organismal function, and will allow us to address questions regarding the functional benefits (or lack thereof) and dynamics of this complexity under in vivo conditions. This paper has two main objectives. First, we present a cohesive and integrative review of regional variation in function within muscles, and discuss the functional ramifications that can stem from this variation. This involves splitting regional variation into passive and active components. Second, we assess the functional integration of muscles between different limb segments by presenting new data involving in vivo measurements of activation and strain from the medial gastrocnemius, iliotibialis cranialis and iliotibialis lateralis pars preacetabularis of the helmeted guinea fowl (Numida meleagris) during level running on a motorized treadmill. Future research directions for both of these objectives are presented.
Higham TE, Biewener AA, Delp SL. Mechanics, modulation and modelling: how muscles actuate and control movement. Philos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol Sci. 2011;366 :1463-5.Abstract
Animal movement is often complex, unsteady and variable. The critical role of muscles in animal movement has captivated scientists for over 300 years. Despite this, emerging techniques and ideas are still shaping and advancing the field. For example, sonomicrometry and ultrasound techniques have enhanced our ability to quantify muscle length changes under in vivo conditions. Robotics and musculoskeletal models have benefited from improved computational tools and have enhanced our ability to understand muscle function in relation to movement by allowing one to simulate muscle-tendon dynamics under realistic conditions. The past decade, in particular, has seen a rapid advancement in technology and shifts in paradigms related to muscle function. In addition, there has been an increased focus on muscle function in relation to the complex locomotor behaviours, rather than relatively simple (and steady) behaviours. Thus, this Theme Issue will explore integrative aspects of muscle function in relation to diverse locomotor behaviours such as swimming, jumping, hopping, running, flying, moving over obstacles and transitioning between environments. Studies of walking and running have particular relevance to clinical aspects of human movement and sport. This Theme Issue includes contributions from scientists working on diverse taxa, ranging from humans to insects. In addition to contributions addressing locomotion in various taxa, several manuscripts will focus on recent advances in neuromuscular control and modulation during complex behaviours. Finally, some of the contributions address recent advances in biomechanical modelling and powered prostheses. We hope that our comprehensive and integrative Theme Issue will form the foundation for future work in the fields of neuromuscular mechanics and locomotion.
Daley MA, Biewener AA. Leg muscles that mediate stability: mechanics and control of two distal extensor muscles during obstacle negotiation in the guinea fowl. Philos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol Sci. 2011;366 :1580-91.Abstract
Here, we used an obstacle treadmill experiment to investigate the neuromuscular control of locomotion in uneven terrain. We measured in vivo function of two distal muscles of the guinea fowl, lateral gastrocnemius (LG) and digital flexor-IV (DF), during level running, and two uneven terrains, with 5 and 7 cm obstacles. Uneven terrain required one step onto an obstacle every four to five strides. We compared both perturbed and unperturbed strides in uneven terrain to level terrain. When the bird stepped onto an obstacle, the leg became crouched, both muscles acted at longer lengths and produced greater work, and body height increased. Muscle activation increased on obstacle strides in the LG, but not the DF, suggesting a greater reflex contribution to LG. In unperturbed strides in uneven terrain, swing pre-activation of DF increased by 5 per cent compared with level terrain, suggesting feed-forward tuning of leg impedance. Across conditions, the neuromechanical factors in work output differed between the two muscles, probably due to differences in muscle-tendon architecture. LG work depended primarily on fascicle length, whereas DF work depended on both length and velocity during loading. These distal muscles appear to play a critical role in stability by rapidly sensing and responding to altered leg-ground interaction.
Biewener AA. Muscle function in avian flight: achieving power and control. Philos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol Sci. 2011;366 :1496-506.Abstract
Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33-42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12-23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.
Arnold AS, Richards CT, Ros IG, Biewener AA. There is always a trade-off between speed and force in a lever system: comment on McHenry (2010). Biol LettBiol LettBiol Lett. 2011;7 :878-9; discussion 880-1.
2010
Tobalske BW, Biewener AA, Warrick DR, Hedrick TL, Powers DR. Effects of flight speed upon muscle activity in hummingbirds. J Exp BiolJ Exp BiolJ Exp Biol. 2010;213 :2515-23.Abstract
Hummingbirds have the smallest body size and highest wingbeat frequencies of all flying vertebrates, so they represent one endpoint for evaluating the effects of body size on sustained muscle function and flight performance. Other bird species vary neuromuscular recruitment and contractile behavior to accomplish flight over a wide range of speeds, typically exhibiting a U-shaped curve with maxima at the slowest and fastest flight speeds. To test whether the high wingbeat frequencies and aerodynamically active upstroke of hummingbirds lead to different patterns, we flew rufous hummingbirds (Selasphorus rufus, 3 g body mass, 42 Hz wingbeat frequency) in a variable-speed wind tunnel (0-10 m s(-1)). We measured neuromuscular activity in the pectoralis (PECT) and supracoracoideus (SUPRA) muscles using electromyography (EMG, N=4 birds), and we measured changes in PECT length using sonomicrometry (N=1). Differing markedly from the pattern in other birds, PECT deactivation occurred before the start of downstroke and the SUPRA was deactivated before the start of upstroke. The relative amplitude of EMG signal in the PECT and SUPRA varied according to a U-shaped curve with flight speed; additionally, the onset of SUPRA activity became relatively later in the wingbeat at intermediate flight speeds (4 and 6 m s(-1)). Variation in the relative amplitude of EMG was comparable with that observed in other birds but the timing of muscle activity was different. These data indicate the high wingbeat frequency of hummingbirds limits the time available for flight muscle relaxation before the next half stroke of a wingbeat. Unlike in a previous study that reported single-twitch EMG signals in the PECT of hovering hummingbirds, across all flight speeds we observed 2.9+/-0.8 spikes per contraction in the PECT and 3.8+/-0.8 spikes per contraction in the SUPRA. Muscle strain in the PECT was 10.8+/-0.5%, the lowest reported for a flying bird, and average strain rate was 7.4+/-0.2 muscle lengths s(-1). Among species of birds, PECT strain scales proportional to body mass to the 0.2 power (infinityM(b)(0.2)) using species data and infinityM(b)(0.3) using independent contrasts. This positive scaling is probably a physiological response to an adverse scaling of mass-specific power available for flight.
Lentink D, Biewener AA. Nature-inspired flight--beyond the leap. Bioinspir BiomimBioinspir BiomimBioinspir Biomim. 2010;5 :040201.

Pages