Muscle function in avian flight: achieving power and control


Biewener AA. Muscle function in avian flight: achieving power and control. Philos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol SciPhilos Trans R Soc Lond B Biol Sci. 2011;366 :1496-506.

Date Published:

May 27


Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms for minimizing energy losses associated with body movement combined with elastic energy savings to reduce the skeletal muscles' work requirements. Muscles also produce substantial power during swimming, but this is mainly to overcome body drag rather than to support the animal's weight. Here, I review the function and architecture of key flight muscles related to how these muscles contribute to producing the power required for flapping flight, how the muscles are recruited to control wing motion and how they are used in manoeuvring. An emergent property of the primary flight muscles, consistent with their need to produce considerable work by moving the wings through large excursions during each wing stroke, is that the pectoralis and supracoracoideus muscles shorten over a large fraction of their resting fibre length (33-42%). Both muscles are activated while being lengthened or undergoing nearly isometric force development, enhancing the work they perform during subsequent shortening. Two smaller muscles, the triceps and biceps, operate over a smaller range of contractile strains (12-23%), reflecting their role in controlling wing shape through elbow flexion and extension. Remarkably, pigeons adjust their wing stroke plane mainly via changes in whole-body pitch during take-off and landing, relative to level flight, allowing their wing muscles to operate with little change in activation timing, strain magnitude and pattern.


Biewener, Andrew AengComparative StudyResearch Support, U.S. Gov't, Non-P.H.S.ReviewEngland2011/04/20 06:00Philos Trans R Soc Lond B Biol Sci. 2011 May 27;366(1570):1496-506. doi: 10.1098/rstb.2010.0353.