In vivo bone strain and ontogenetic growth patterns in relation to life-history strategies and performance in two vertebrate taxa: goats and emu

Date Published:



This study examined ontogenetic patterns of limb loading, bone strains, and relative changes in bone geometry to explore the relationship between in vivo mechanics and size-related changes in the limb skeleton of two vertebrate taxa. Despite maintaining similar relative limb loads during ontogeny, bone strain magnitudes in the goat radius and emu tibiotarsus generally increased. However, while the strain increases in the emu tibiotarsus were mostly insignificant, strains within the radii of adult goats were two to four times greater than in young goats. The disparity between ontogenetic strain increases in these taxa resulted from differences in ontogenetic scaling patterns of the cross-sectional bone geometry. While the cross-sectional and second moments of area scaled with negative allometry in the goat radius, these measures were not significantly different from isometry in the emu tibiotarsus. Although the juveniles of both taxa exhibited lower strains and higher safety factors than the adults, the radii of the young goats were more robust relative to the adult goats than were the tibiotarsi of the young compared with adult emu. Differences in ontogenetic growth and strain patterns in the limb bones examined likely result from different threat avoidance strategies and selection pressures in the juveniles of these two taxa.


Main, Russell PBiewener, Andrew AengResearch Support, Non-U.S. Gov't2005/12/29 09:00Physiol Biochem Zool. 2006 Jan-Feb;79(1):57-72. Epub 2005 Nov 16.