Ontogenetic patterns of limb loading, in vivo bone strains and growth in the goat radius

Date Published:

Jul

Abstract:

As tetrapods increase in size and weight through ontogeny, the limb skeleton must grow to accommodate the increases in body weight and the resulting locomotor forces placed upon the limbs. No study to date, however, has examined how morphological changes in the limb skeleton during growth reflect ontogenetic patterns of limb loading and the resulting stresses and strains produced in the limbs. The goal of this study was to relate forelimb loads to in vivo bone strains in the radius of the domestic goat (Capra hircus) across a range of gaits and speeds through ontogeny while observing how the growth patterns of the bone relate to the mechanics of the limb. In vivo bone strains in the radius were recorded from two groups of juvenile goats (4 kg, 6 weeks and 9 kg, 15 weeks) and compared with previously reported strain data for the radius of adult goats. Ontogenetic strain patterns were examined in relation to peak forelimb ground reaction forces, ontogenetic scaling patterns of cross-sectional geometry and bone curvature, and percentage mineral ash content. Peak principal longitudinal tensile strains on the cranial surface and compressive strains on the caudal surface of the radius increased during ontogeny but maintained a uniform distribution, resulting in the radius being loaded primarily in bending through ontogeny. The increase in strain occurred despite uniform loading (relative to body weight) of the forelimb through ontogeny. Instead, the increase in bone strain resulted from strong negative growth allometry of the cross-sectional area (proportional to M(0.53)) and medio-lateral and cranio-caudal second moments of area (I(ML) proportional to M(1.03), I(CC) proportional to M(0.84)) of the radius and only a small increase (+2.8%) in mineral ash content. Even though bone strains increased with growth and age, strains in the younger goats were small enough to suggest that they maintain safety factors at least comparable with adults when moving at similar absolute speeds. Increased variability of loading in juvenile animals may also favor the more robust dimensions of the radius, and possibly other limb bones, early in growth.

Notes:

Main, Russell PBiewener, Andrew AengComparative StudyResearch Support, Non-U.S. Gov'tEngland2004/06/18 05:00J Exp Biol. 2004 Jul;207(Pt 15):2577-88.